

Western Blot

I. Purpose

To probe with various primary antibodies and to detect a protein of interest in a cell line.

II. Scope

All procedures are applicable to the BCGSC Library Construction Core and Library Technology Development Group.

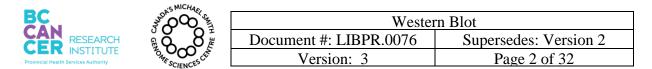
III. Policy

This procedure will be controlled under the policies of the Genome Sciences Centre, as outlined in the Genome Sciences Centre High Throughput Production Quality Manual (QM.0001). Do not copy or alter this document. To obtain a copy see a QA associate,

IV. Responsibility

It is the responsibility of all personnel performing this procedure to follow the current protocol. It is the responsibility of the Group Leader to ensure personnel are trained in all aspects of this protocol. It is the responsibility of Quality Assurance team to audit this procedure for compliance and maintain control of this procedure.

V. References


Document Title				Document Number
N/A				N/A

VI. Related Documents

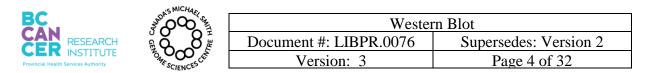
Document Title		Document Number
N/A		N/A

VII.Safety

All Laboratory Safety procedures will be complied with during this procedure. The required personal protective equipment includes a laboratory coat and gloves. See the material safety data sheet (MSDS) for additional information.

VIII. Materials and Equipment

Name	Supplier	Number: #	Model Catalo	
Fisherbrand Textured Nitrile gloves	Fisher Scientific	270-058-53		√
Ice Chest	Igloo	PM PAL BLUE		\checkmark
Wet Ice	In house	N/A	N/A	N/A
DNA away	Molecular Bioproducts	7010		\checkmark
Anhydrous Ethyl Alcohol (100% Ethanol)	Commercial Alcohol	People Soft ID: 23878		~
Large Kimwipes	Fisher Scientific	06-666-117		\checkmark
Black ink permanent marker pen	VWR	52877-310		\checkmark
Small Autoclave waste bags 10"X15"	Fisher Scientific	01-826-4		~
Gilson P10 pipetman	Mandel	GF-44802		~
Gilson P20 pipetman	Mandel	GF23600		~
Gilson P200 pipetman	Mandel	GF-23601		\checkmark
Gilson P1000 pipetman	Mandel	GF-23602		~
Diamond Filter Tips 10uL	Mandel	GF-F171203		\checkmark
Diamond Filter Tips 30uL	Mandel	GF-F171303		\checkmark
Diamond Filter Tips 200uL	Mandel	GF-F171503		~
Diamond Filter Tips 1000uL	Mandel	GF-F171703		\checkmark
RIPA buffer	Pierce	89900		\checkmark
Halt Protease Inhibitor Cocktail (100X)	Pierce	78415		\checkmark
Resolving Gel Buffer (1.5M Tris pH8.8)	Biorad	161-0798		\checkmark
Stacking Gel Buffer (0.5M Tris pH6.8)	Biorad	161-0799		\checkmark
40% 29:1 acrylamid/bis	Biorad	161-0146		\checkmark
10% APS	In House	N/A	N/A	N/A
TEMED	Biorad	161-0801		\checkmark
Ultrapure Water	GIBCO	10977		\checkmark
Precision Plus Protein Kaleidoscope Standards	Biorad	161-0375		~
1X Tris/Glycine/SDS Buffer (Gel running buffer)	Biorad	161-0772		\checkmark
1X Tris/Glycine Buffer (Transfer Buffer mix)	Biorad	161-0771		\checkmark
10X TBS	Biorad	170-6435		~
10% Tween 20 Solution	Biorad	161-0781		\checkmark
Biorad Blotting Grade Blocker (non-fat dry milk)	Biorad	170-6404		\checkmark
Fisherbrand Filter Forceps	Fisher Scientific	09-753-50		~
Mini-PROTEAN [®] Tetra Cell	Biorad	165-8000		\checkmark
PowerPac 200	Biorad	1655050	\checkmark	
Mini Trans-Blot Electrophoretic Transfer Cell	Biorad	170-3930		~
Mini Trans-Blot Filter Paper	Biorad	1703932		~
Trans-Blot Transfer Medium (Nitrocellulous Membrane)	Biorad	162-0115		~
Glacial Acetic Acid	Fisher Scientific	CAS 64-19-7	1	\checkmark
Ponceau Powder	In House	N/A	N/A	N/A
Disposable Polystyrene Weighing Dishes	Fisher Scientific	S40291	1 1/ / 1	√ 11/11
Galaxy Mini Microcentrifuge	VWR	37000-700		~
Rabbit IgG HRP	Cell Signaling	7074	1	\checkmark
0.5mL Tube	Ambion	12350		\checkmark

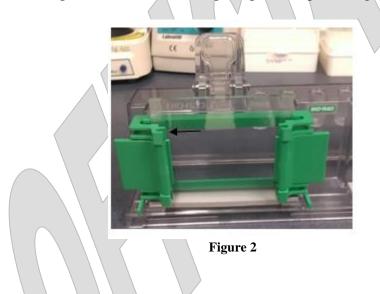

BC	ANDA'S MICHARY VI	Wester	rn Blot
CAN RESEARCH		Document #: LIBPR.0076	Supersedes: Version 2
Provincial Health Services Authority	CONFICES	Version: 3	Page 3 of 32

1.5 ml Eppendorf tube	Ambion	12400	\checkmark
15ml Conical Tubes	VWR	CA21008-918	\checkmark
50ml Conical Tubes	BD Falcon	352070	\checkmark
50ml serological pipettes	Falcon	357550	\checkmark
10mL serological pipettes	Costar	4488	\checkmark
5ml serological pipettes	Costar	4487	\checkmark
Goat Anti-Mouse HRP	Pierce	32430	\checkmark
Supersignal West Femto Maximum Sensitivity Substrate	Thermo Scientific	34095	~
Peltier Thermal Cycler	MJ Research	PTC-225	\checkmark
Goat Anti-Rabbit HRP	Pierce	1858415	\checkmark
Methanol	Fisher Scientific	A412P-4	\checkmark
Mylar	In-house		
ChemiDOC XRS System with Image Lab Software	Biorad	170-8265	\checkmark
Primary Antibody (variable)			

IX. Procedure

1. Equipment preparation in the ChIP Room

- 1.1. Put on a clean pair of gloves and lab coat.
- 1.2. Wipe down the work bench, small equipment, and ice bucket with DNA away and 80% Ethanol.
- 1.3. Open the Western Blot Worksheet Template at R:\Library Core\Epigenomics\Western Blots\Worksheets\Western_Blot_Worksheet_Template and fill in the Antibody name, Company, Catalog #, Lot #, LIMS ID, Aliquot Amt and dilution factor. See Appendix A for an example of the worksheet.
- 1.4. Retrieve the glass plates from the 6^{th} floor ChIP room and scrub the glass gel plates with micro90 and rinse with H₂O. Rinse the plates with 80% Ethanol and wipe the plates dry with a kinwipe.
- 1.5. Assemble the BioRad gel casting apparatus as follows.
 - 1.5.1. Place the short glass plate in front of the spacer glass plate. The spacer glass plate should read BIO-RAD with the arrows pointing up (see Figure 1). Ensure both plates are sitting level in the apparatus before locking them in place.



1.5.2. Place the plate on the base and clip the plates in place (Figure 2).

2. Making the Gel

- 2.1. Retrieve 40% 29:1 acrylamide/bis, 10% APS and TEMED from the 4°C fridge. Retrieve Biorad Resolving Gel Buffer (1.5M Trip pH8.8) and dH₂O from room temperature.
- 2.2. In a fume hood, make a 10% or 15% Resolving Gel depending on protein size. See Table 1 for Resolving Gel preparation. In a 15mL tube, add the reagents in the order listed. Immediately after adding TEMED, invert the tube 5-6 times and pour the resolving gel up to line indicated by the arrow (see Figure 2).

BC	ANDA SMICHAEL SH	Wester	rn Blot
CAN RESEARCH		Document #: LIBPR.0076	Supersedes: Version 2
Provincial Health Services Authority	² O _M C _{SCIENCES}	Version: 3	Page 5 of 32

Table 1. Resol	ving Gel		
Protein Size	% Gel	Reagent	Volume
15-50kDa	15	Biorad Resolving Gel Buffer (1.5M Tris pH8.8)	2.5mL
		40% 29:1 acrylamide/bis	3.75mL
		dH ₂ O	3.75mL
		10% APS	50µL
		TEMED	30µL
>50kDa	10	Biorad Resolving Gel Buffer (1.5M Tris pH8.8)	2.5mL
		40% 29:1 acrylamide/bis	2.5mL
		dH ₂ O	5mL
		10% APS	50µL
		TEMED	30µL

2.3. With a 1mL pipette, pipette distilled water on top of the resolving gel and fill up to the top to level out the gel. Add the water carefully to avoid mixing the water with the resolving gel.

- 2.4. Allow the gel to polymerize and pour off the distilled water. Use a kimwipe to completely remove the distilled water from the resolving gel.
- 2.5. In a fume hood, make a 6% Stacking Gel. See Table 2 for Stacking Gel preparation. In a 15mL tube, add the reagents in the order listed. Immediately after adding TEMED, invert the tube 5-6 times and pour the stacking gel on top of the resolving gel.

Protein Size	% Gel	Reagent	Volume
15-50kDa,	6	Biorad Stacking Gel Buffer (0.5M Tris pH6.8)	2.5mL
>50kDa		40% 29:1 acrylamide/bis	1.5mL
	\sim	dH2O	6mL
		10% APS	50µL
		TEMED	30µL

Table 2. Stacking Gel


T 11 4 D

. .

a 1

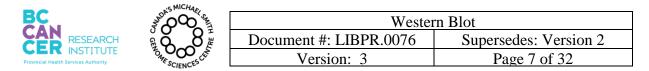
2.6. Immediately insert a comb between the 2 glass plates and allow the stacking gel to polymerize (See Figure 3).

- 2.7. When the gel has successfully polymerized, unclip the plates from the base and unlock the casting apparatus.
- 2.8. Carefully slide out the two plates and set the polymerized gel aside until needed. Do NOT separate the plates and do NOT remove the comb.
- 2.9. The gels can be prepared up to 1 day in advance and left overnight. Wrap the gels with moist paper towels and saran wrap and store the gels in the 4°C fridge.

3. Preparing the Samples for Gel Running

*Note: A fresh batch of HL60 and HelaS3 cell lysate must be prepped as per LIBPR.0074 - Total Lysate Prep and BCA Protein Assay for each Western Blot.

- 3.1. Aliquot the HL60 and HelaS3 cell lysate in 25ug aliquots.
- 3.2. In a fume hood, add 10µL laemmli dye (1:1) to the cell lysate samples.
- 3.3. Boil the samples at 70°C in a thermocycler for 10 minutes. Do NOT boil the ladder.
- 3.4. Place the samples immediately on ice before loading on the gel.


4. Running the Gel

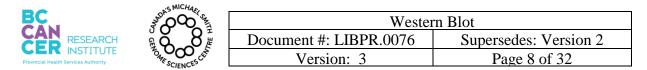
4.1. Prepare the 1X Gel Running Buffer (1X Tris/Glycine/SDS Buffer) and store at RT.


Table 5. 1A Ger Kunning burler		
Reagent	Volume	
10x Tris/Glycine/SDS Buffer	100mL	
dH ₂ O	900mL	

Table 3. 1X Gel Running Buffer

BCGSC - Confidential information not to be disseminated

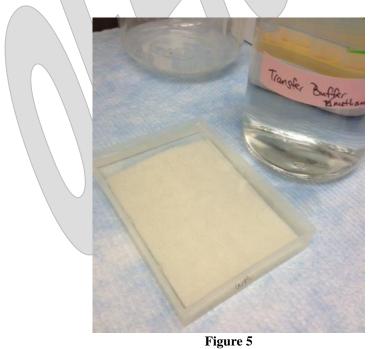
4.2. Load the polymerized gel plate into the gel running apparatus. Ensure that the short glass plate is facing inwards and that a gel buffer dam is in place if only 1 gel is being run. Clamp the frame closed to lock the plate in place (See Figure 4).

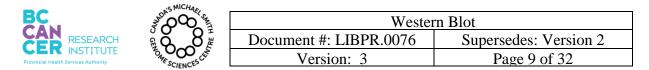


Insert Buffer Dam

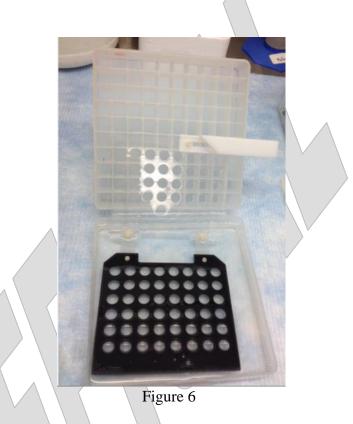
Insert Gel Plate

Lock the Plate in Place


- 4.3. Pour the prepared gel running buffer in the inner chamber between the gel and the gel buffer dam. Fill the inner chamber until the buffer line is above the wells. Check for leaks. If leaks appear, re-seat the gel plate.
- 4.4. Carefully remove the comb. Using a 1mL pipette, gently rinse the wells.
- 4.5. Top up the inner chamber with gel running buffer and allow the buffer to overflow in to the outside chamber.
- 4.6. Fill the outside chamber with the gel running buffer. Approximately 500mL of gel running buffer is used to fill both the inner chamber and outer chamber of the apparatus.
- 4.7. Load the samples $(20\mu L)$ and the Precision Plus Protein Kaleidoscope ladder $(10\mu L)$ into the wells of the gel. Do not load the ladder or the sample into the wells at the ends of the gel. The sample can be loaded in the wells next to the ladder. Document the loading order in the worksheet (See Appendix B)
- 4.8. Place the lid on the gel box and connect the electrodes to the Biorad PowerPac 200.
- 4.9. Run the gel at 150V until the dye front just runs off (~65mins)
- 4.10. Remove the lid and remove the clamping frame from the gel box. Unload the gel plate from the gel running apparatus.



- 4.11. Carefully pry the plates apart with the plate separator and transfer the gel to the blot sandwich. See Step 5.3 for the blot sandwich assembly.
- 4.12. Rinse the gel running apparatus, gel comb and plate separator with micro90, rinse with H₂O and leave to dry overnight. Wash the glass plates with micro90, dH₂O and then with 80% Ethanol, allow the glass plates to dry overnight.
- 5. Transferring the proteins to a nitrocellulose membrane ***dissassemble gel and assemble transfer set up in the fumehood***
 - 5.1. Prepare the 1X Transfer Buffer (1X Tris/Glycine Buffer) and store at 4°C. Add the methanol in a fumehood.

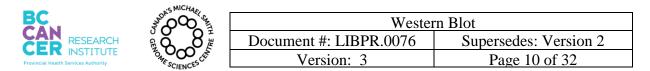
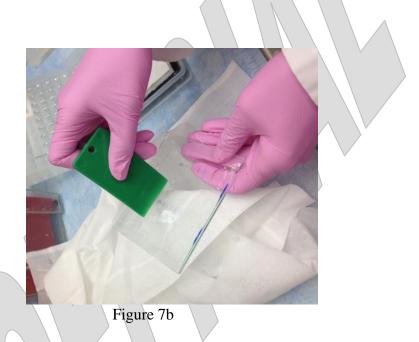
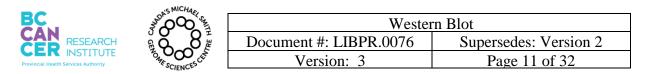

Table 4. 1X Transfer Buffer	
Reagent	Volume
10x Tris/Glycine Buffer	100mL
dH ₂ O	700mL
Methanol	200mL

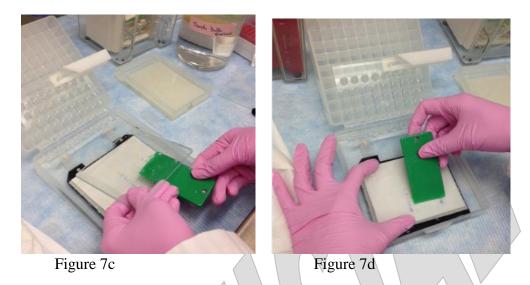
5.2. Soak 2 pieces of sponges in 1X Transfer buffer for at least 10 minutes at room temperature in the FUMEHOOD. (See Figure 5)

5.3. Once the gel is finished running, assemble the blot sandwich in a container filled with 1x Transfer Buffer. (See Figure 6).

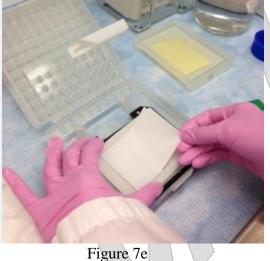
- 5.4. Set up the transfer in the following order: Ensure that all components of the sandwich are submerged in the transfer buffer to prevent the creation of bubbles during assembly.
 - 5.4.1. Place 1 piece of presoaked sponge on the black plate. (Figure 7a)

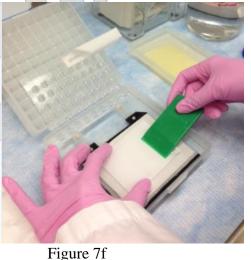
BCGSC-Confidential information not to be disseminated

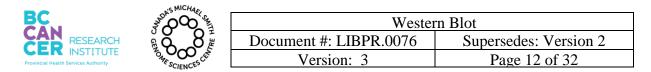




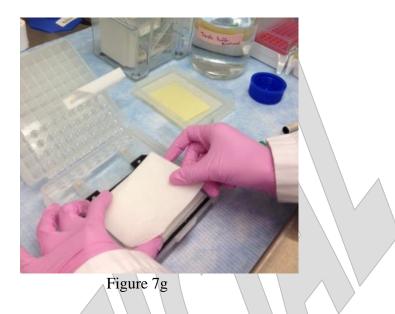

Figure 7a

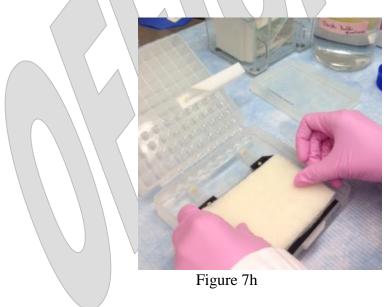
- 5.4.2. Soak 1 piece of precut Whatman paper in transfer buffer and place on top of the sponge.
- 5.4.3. Dissassemble the gel running apparatus using the plate separator. Cut the stacking gel from the separating gel part and discard it. (Figure 7b)



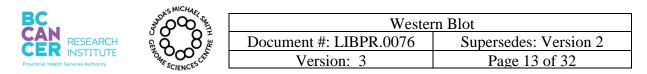

5.4.4. Carefully transfer the gel onto the sandwich (ie on top of the whatman paper piece) and smooth out any air pockets by compressing gently with the plate separator. (Figure 7c and Figure 7d).




5.4.5. Soak in transfer buffer 1 piece of nitrocellulose membrane cut to the size of the gel and place on top of the gel gently and release any air pockets by gently compressing with the plate separator. (Figure 7e and Figure 7f)

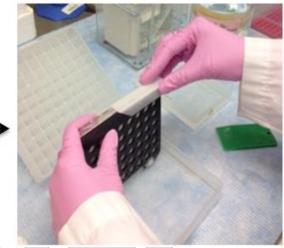
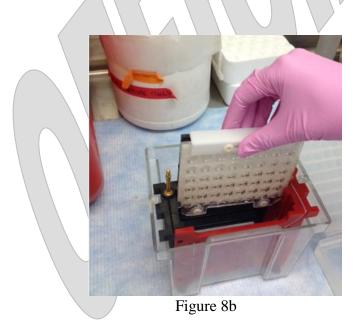
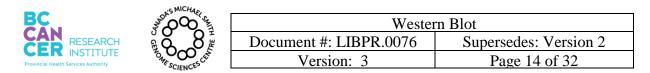


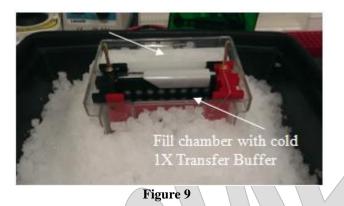
5.4.6. Soak a piece of whatman paper in 1x transfer buffer and place gently on the sandwich. Again release any air pockets by gently compressing with the plate separator (Figure7g). Remove any air pockets by gently by compressing the sandwich with the plate separator, in a sweeping motion.



5.4.7. Now place the presoaked sponge on top to finish the assembly of the sandwich. Roll out any air bubbles as described above. (Figure 7h)

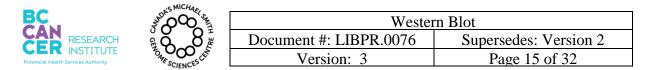
5.4.8. Close the transfer holder by placing the white lever over the two plates (1) and slide the lever (2) to lock the plates together (See Figure 8a).


Figure 8a

5.5. Insert the cassette into the transfer apparatus with the black plate facing the black negative (-) electrode and the clear plate facing the red positive (+) electrode (See Figure 8b). The membrane should be closest to the (+) electrode.

5.6. Place the transfer apparatus on ice. The white container should be filled with water and prefrozen. Fill the chamber with cold 1X Transfer Buffer (See Figure 9).



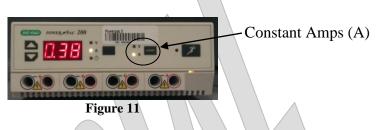
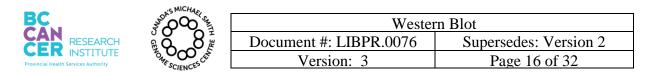
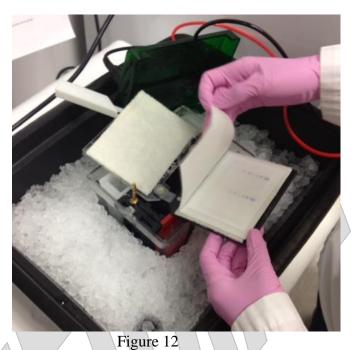

- 5.7. Place the lid on the gel box and connect the electrodes to the Biorad PowerPac 200.
- 5.8. Place the entire assembly including the ice bucket into the 4°C fridge. (Figure 10)

Figure 10

5.9. Transfer the proteins on the gel to the nitrocellulose membrane at 0.38A for 1 hour (See Figure 11). Ensure that the constant on the PowerPac is set to Amps (A). **LEAVE THE POWER PAC AT ROOM TEMP.**

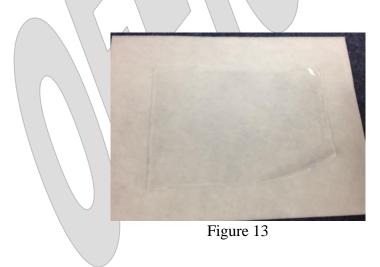
6. Blocking the nitrocellulose membrane

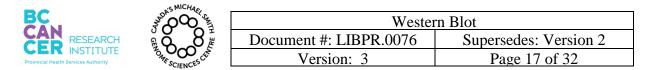

6.1. Prepare 1X TBST (1X TBS + 0.05% Tween) and store at room temperature.

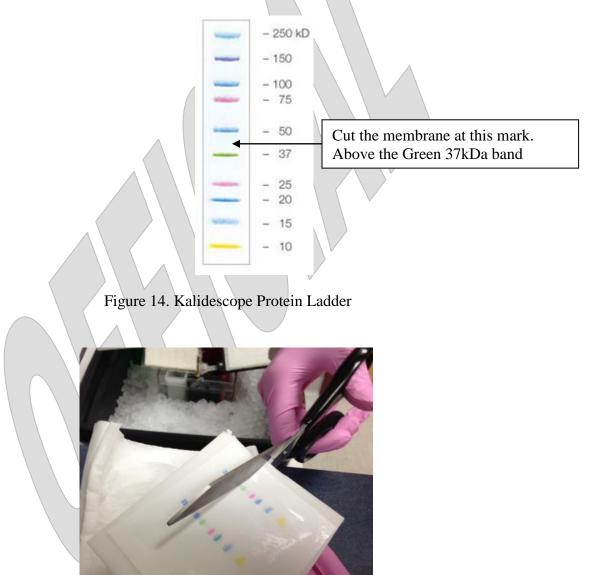

Table 5. 1X TBST	
Reagent	Volume
10X TBS	50mL
10% Tween	2.5mL
dH2O	447.5mL

6.2. In a 50mL tube, prepare fresh 5% milk in 1X TBST. Confirm with the antibody data sheet that a 5% milk solution is the ideal blocking solution for it. If not, follow the data sheet and use the appropriate blocking solution.

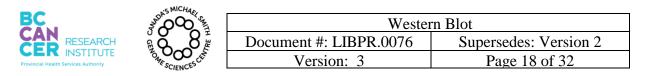
1	Fable 6. 5% milk in 1X TBST	
	Reagent	Volume
	Biorad Blotting Grade Blocker (non-fat dry milk)	1.25g
	1X TBST	up to 25mL


- 6.3. Thoroughly shake the tube to resuspend the milk powder into solution. The prepared solution can be kept for up to a week. Keep at 4°C until ready to use.
- 6.4. After the transfer is complete, carefully remove the assembly from the 4°C and place the transfer unit on the bench. Dissassemble the sandwich, carefully. Leave the nitrocellulose membrane on a piece of whatman paper. (See Figure 12). The damp whatman paper helps prevent the membrane from drying out.




chould have no visible hands on it. If the transfer we

6.5. The actual gel should have no visible bands on it. If the transfer was successful, it should be clear. See Figure 13 for a successful transfer of the gel.


6.6. Cut the membrane to the shape of the gel, including the top part of gel, using the ladder as an indicator. See Figure 14 below of the Protein ladder and where to cut the membrane, only if the size of band expected is less than 35kDa. Save the top of the membrane for Step 6.10. Also see Figure 15 for an actual image of a gel being cut. The steps following are for visualization of proteins less than 35kDa

6.7. Trim the membrane along the sides and bottom. See Figure 16.

BCGSC-Confidential information not to be disseminated



6.8. Place the membrane protein side up in the custom dish made by the Engineering Group (Figure 17).

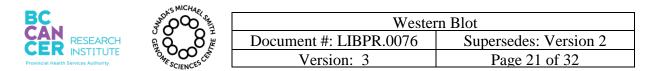
- 6.9. Pipette 3mL of the prepared blocking solution (5% milk in 1X TBST or 5% BSA in 1X TBST) to cover the membrane.
- 6.10. Incubate and block the membrane for 1 hour at room temperature with shaking.
- 6.11. To confirm that the transfer of proteins was successful, stain the TOP part of the membrane (step 6.6) with Ponceau stain. Refer to Appendix B for the Ponceau stain transfer confirmation process.
- 6.12. Label each tray with the name of the antibody being tested. Include a positive control antibody if necessary.
- 7. Probe the nitrocellulose membrane.
 - 7.1. Pour off the blocking solution.

- 7.2. Probe with the Primary Antibody.
 - 7.2.1. Add 3mL of 5% milk in 1X TBST (or whichever blocking solution is suggested by the manufacturer noted on the data info sheet) to cover the membrane.
 - 7.2.2. Add the appropriate amount of primary antibody directly to the blocking solution covering the membrane (see antibody data sheet for the appropriate dilution factor of antibody).
 - 7.2.3. Incubate overnight at 4C with shaking.
- 7.3. Pour off the blocking solution.
- 7.4. Wash 3 times with 1X TBST, 10 minutes each with shaking. The Orbital Shaker is marked 'W" along the Speed dial indicating the intensity of the washing. Ensure the dial is set correctly.
- 7.5. Pour off the excess 1X TBST.
- 7.6. Probe with the Secondary Antibody.
 - 7.6.1. Add 3mL of 5% milk in 1X TBST to cover the membrane.
 - 7.6.2. Add1µL of secondary antibody Pierce Goat Anti-Rabbit (1 in 3000 dilution). Ensure the species origin of the primary antibody is rabbit. If the origin of the antibody is mouse, use Goat Anti-Mouse IgG.
 - 7.6.3. Incubate the secondary antibody for 1 hour at room temperature with shaking. The Orbital Shaker is marked with an 'I' along the Speed dial indicating the intensity of the shaking speed. Ensure the Speed dial is set correctly.
- 7.7. Wash 3 times with 1X TBST, 10 minutes each with shaking.
- 7.8. Leave the last 1X TBST wash on the blot in the cassette. Wrap the cassette in plastic wrap carefully. This is to prevent spilling of the buffer while transporting it to the CRC.

8. Detection and Imaging at the CRC

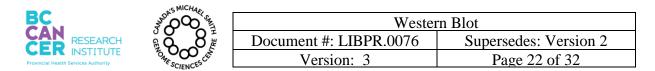
- 8.1. Bring the following to the CRC for developing:
 - 8.1.1. Pierce substrate: SuperSignal West Femto Maximum Sensitivity Substrate
 - 8.1.2. 1mL pipettor and 1mL barrier tips

BC	SPORT SMICHAE	Wester	n Blot
CAN RESEARCH		Document #: LIBPR.0076	Supersedes: Version 2
Provincial Health Services Authority	TO NIE SCIENCES	Version: 3	Page 20 of 32


This is a non-controlled version.

*Note: controlled versions of this document are subject to change without notice.

- 8.1.3. 15mL falcon tube
- 8.1.4. KimWipes
- 8.1.5. Timer
- 8.1.6. Black Marker
- 8.1.7. 2 Pair of Gloves
- 8.1.8. Disposable lab coat
- 8.1.9. Clean mylar sheets (2 per blot)
- 8.1.10. Blot in cassette
- 8.2. At the CRC
 - 8.2.1. Put on disposable lab coat and gloves. Log into the computer connected to the ChemiDOC System (Figure 18). Double click on the Image Lab icon to initialize the software.

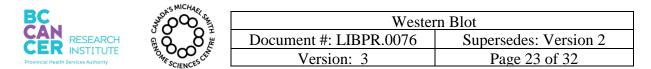

- 8.2.2. Mix together 1mL of the Enhancer Solution and 1mL of the Peroxide Buffer from the Pierce Substrate kit in a 15mL falcon tube. (ECL Stain)
- 8.2.3. Unwrap the cassette containing the blot and using gloved hands transfer the blot to a piece of mylar. Transfer the antibody label from the tray to the mylar sheet.
- 8.2.4. Add the ECL stain to the blot, enough to cover the blot but not soak it. After a few seconds gently pour off the stain from the blot and use a kimwipe to soak up the

excess stain. Cover the blot with another piece of mylar. Ensure no large bubbles are in the sandwich. Place the sandwich onto the middle of the imager deck. (See Figure 19) Close the lid.

- 8.2.5. Image the blot using the Image Lab Software.
- 8.2.6. Click on the 'New Single Channel' icon (Figure 20).

This is a non-controlled version.

*Note: controlled versions of this document are subject to change without notice.


Activity Protocolic Aritologic Includes steps for imaging and analyzing your sample. Once the protocol is sample, it can be mused to general to reproducible data. Recent Protocolic Income Table Onen Onen Income Table Onen		🛤 Start Page
H11111	Recent Protocols:	A Protocol includes steps for imaging and analyzing your sample. Once the protocol is sawed, it can be reused to generate reproducible data.
Bill Lands (2014-02-21 13tr 03ten Euser dat of an experiment. Bill Lands (2014-02-21 13tr 03ten Euser Bill Lands (2014-02-21 13ten Euser Bill Lands (2014-02-21 13ten Euser	4. Ball Kanoh 2014 02-21 12hr 07min Evpor	data of an experiment.

8.2.7. Set up the image capture with the following parameters (also see Figure 21):


- a. Chemi Hi Sensitivity Blot under the Applications Icon
- b. The software will automatically optimize the exposure time for Intense Bands
- c. Deselect Highlight saturated pixels
- d. Centre the blot on the tray by clicking on the 'Position Gel' icon

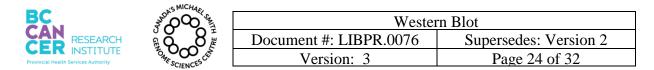
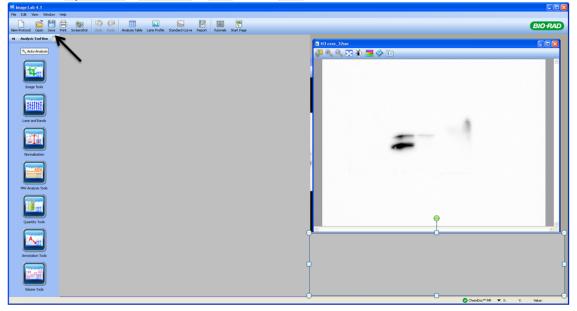
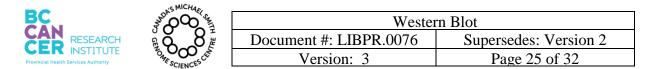

🍱 Image Lab 4.1		
File Edit View Window	Help	
New Protocol Open Save		Arsis Table Lane Profile Standard Curve Report Tutorials Start Page
44 Analysis Tool Box 🔀	🙀 Protocol1 - ChemiDocª MP*	
* Auto-Analysis	Protocol Setup	1. Gel Imaging
	Acquisition Settings	Application C
	Analyze image	Nucleic Acid Gels Protein Gels
Image Tools	2. Lane And Band Detection 3. Analyze Molecular Weight	Blots Chemi
	Generate Output	Custom Chemi Hi Sensitivity Light: Chemi Hi Resolution
耕耕耕	4. Specify Output	Stain Free Blot
Lane and Bands	Protocol Summary	SYPRO Ruby
	r totocor summary	Select ger type: tio Rhodamine Enter image area: 9.0 Fluorescein (L)
		Qdots 525 Image Exposure Qdots 605
Normalization	b	O→ The software will autom Qdots 625 time for Intense Bands ▼
		Manually set exposure time: 0.500 sec
kDa		Display Options
MW Analysis Tools	Run Protocol C	Highlight saturated pixels Image Color: Gray

Figure 21

8.2.8. Centre the blot on the imager deck if needed to fit in the viewer of the software (Figure 22). If necessary, open the deck and physically move the blot to adjust. Once the blot is centered, click on the 'Run Protocol' icon.

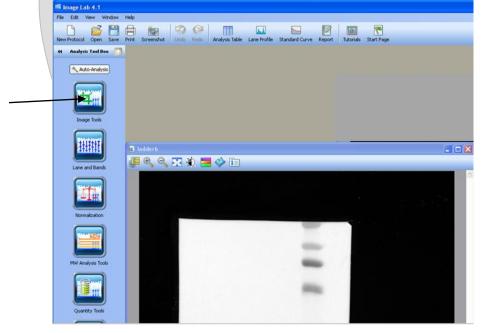

This is a non-controlled version.

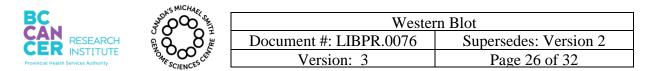

*Note: controlled versions of this document are subject to change without notice.

8.2.9. Auto exposure of the blot. See Figure 23.

0	A CONTRACTOR OF T	
	Interplated 1	
•	Image: Antipage Construction Series Image: Antipage Construction Series Image: Antipage Construction Image: Antipage	
0-		Figure 23

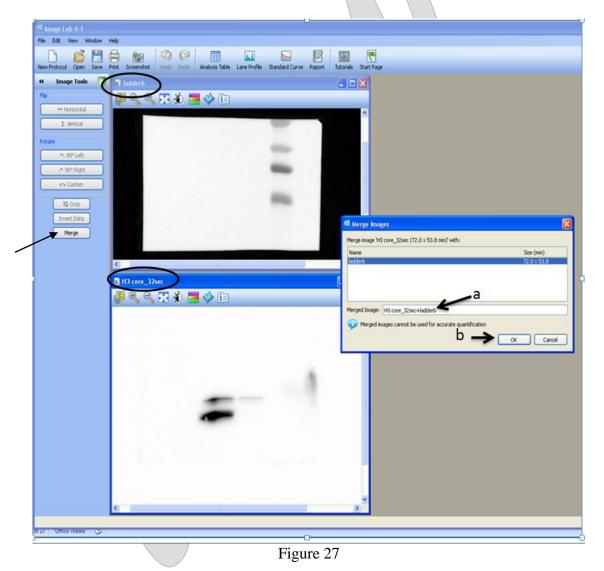
8.2.10. Save the blot image with the name of the primary antibody and date in a prelabeled folder in R:\filer05b\geneexplab\Library Core\Epigenomics\Western Blot\(1° Antibody Name)




8.2.11. Take an image of the ladder by following the lettered steps in Figure 25. Note the red arrows for auto exposure set up, and unhighlighted saturated pixels. Since the blot has not been moved, it does not need to be positioned. Simply run the protocol.

Analysis Tool Box 🔝	Protocol1 - ChemiDoc* MP*			
Auto-Amalysis	Protocol Setup	1. Gel Imaging		
	Acquisition Settings	Application		
4	Analyze Image	Nucleic Acid Gels >		
	2. Lane And Band Detection	Blots	Chemi	
Driage Tools	3. Analyze Molecular Weight	Custom +	Chemi Hi Senskivity	
(Generate Output a	Light:	Chemi Hi Resolution	
耕耕租	4. Specify Output		Stain Free Blot	
DOMA	- in special carbon	Imaging Area	Colorimetric	h
Lane and Bands	Protocol Summary	Select gel type: Bio	SYPRO Ruby	- D
	Protocol Summary		Rhodamine	
The second s		C Enter image area: 9.0	Fluorescein (L)	
- <u></u>		Image Exposure	Qdots 525 Qdots 605	
		100 m m	A CONTRACT OF A CONTRACT	factor and an and an
Normalization	-	The software will autom	cons and the ro	r Intense Bands 💌
		 Manually set exposure time 	H 0.500 Sec	
kon	Position Gel			
	Posicion Gel	Display Options		
HW Analysis Tools	C - Run Protocol	Highlight saturated pixels	Image Color:	Gray 💌

8.2.12. Save the ladder image in the directory location noted in Step 8.2.10. and naming the image file 'ladder' and include the date. See Figure 26



BCGSC - Confidential information not to be disseminated

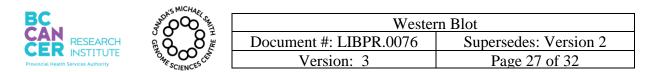
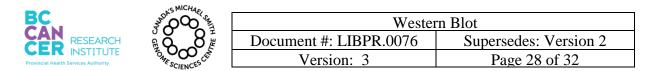
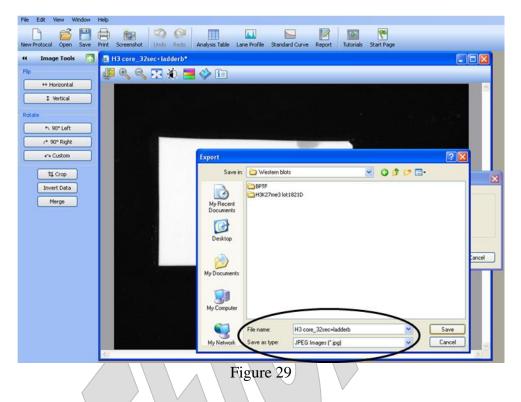
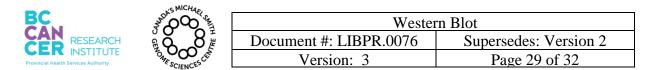


Figure 26

8.2.13. Merge the 2 images together. Click on the 'Image Tools' icon on the left side of the screen (Figure 26). Next, click on the 'Merge' icon. See Figure 27. Select the images to be merged (a). Then click OK (b).


8.2.14. Save the merged image as a screenshot (Figure 28). Click on the 'Screenshot' icon. A window will pop up, prompting the user to which image to save. Select 'Current Image View' (b). Ensure the merged image is the image in the current view window of the software. Click on 'To File' to save the image to a file (c)




8.2.15. Change the file type to a jpeg image, and save the merged image in the same folder in the directory noted in Step 8.2.10 (Figure 29). Change the name of the file to reflect that it is a merged image.

8.2.16. Once the image is saved, exit out of the software and log off of the computer.

- 8.3. Remove the blot from the imager deck and wipe down the deck with dH₂0. Tidy up area and place all supplies and reagents back into transporting bag. Discard gloves and disposable lab coat.
- 8.4. At Echelon, send the results of the western blot to supervisors in a PowerPoint document with details of the experiment. Update the Antibody Database with the results as well.

Western Blot - Gel Running

APPENDIX A – Western Blot Worksheets

Date:

	Added
3.75mL	
2.5mL	
3.75mL	
50µL	
30µL	
	2.5mL 3.75mL 50μL

Pour resolving gel and immediately pipet distilled water on top

6% Stacking Gel		Added
dH2O	6mL	
Biorad Stacking Gel Buffer (0.5M Tris pH6.8)	2.5mL	
40% 29:1 acrylamide/bis	1.5mL	
10% APS	50µL	
TEMED	30µL	

Pour off water

Pour stacking gel and add comb

Prepare 1X Gel Running Buffer

Reagent	Volume	Added
10X Tris/Glycine/SDS Buffer	100mL	
dH20	900mL	

Prepare Total Lysate Samples

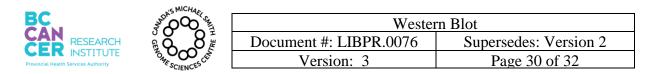
Lysate concentrat	ion	9.25	ug/ul (HL60)
Lysate Amount	Diluti	on	
25ug	2.7ul	HL60 + 7.3u	RIPA + PIC

Lysate concentration 14.2 ug/ul (Hela)

Lysate Amount	Dilution	
25ug	1.8ul HL60 + 8.2ul RIPA + PIC	

<u></u>	Layu						
1	2	3	4	5	6	7	8
	10ul ladder	HL60 (25ug)	Hela (25ug)	10ul ladder	HL60 (25ug)	Hela (25ug)	

Gel Lavout


Add 10ul of loading dye to lysate samples

Boil samples at 90°C in a thermocycler for 10 minutes and then place on ice

Load Ladder and Lysate according to Gel Layout

Run gel at 150V for 65 minutes

BCGSC - Confidential information not to be disseminated

This is a non-controlled version.

*Note: controlled versions of this document are subject to change without notice.

Western Blot - Transfer

Date:					
	-	-			

*prepare in fume hood

Prepare 1X Transfer Buffer*

100mL	
200mL	
700mL	
	200mL

Store Transfer buffer at 4°C

Assemble Blot Sandwich*

Pre-soak sponges and whatman paper in transfer buffer

Clear Plate (+)	
1 Piece of sponge	
1 Piece of Whatman Paper	
1 Piece of nitrocellulose membrane	
Gel	
1 Piece of Whatman Paper	
1 Piece of sponge	
Black Plate (-)	

Assemble sandwich in transfer buffer

Remove bubbles with serological pipette

Insert sandwich into transfer apparatus (black plate closest to black side of chamber)

Transfer proteins at 380mA for 60mins

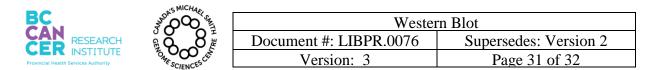
Preparing Blocking Solution

1X TBST

Reagent	Volume	Added
10X TBS	50mL	
10% Tween	2.5mL	
dH20	447.5mL	

Store 1X TBST at room temperature

5% milk in 1X TBST (blocking solution)


Reagent Volume Added Biorad Blotting Grade Blocker (non-fat dry milk) 2.5g 1X TBST up to 50mL

Shake vigorously to resuspend milk powder into solution Store 5% milk in 1X TBST at 4°C

Blocking the nitrocellulose membrane

Pipette 3mL of blocking solution in a petri dish

- Cut the membrane and place into the blocking solution
- Incubate and block membrane at room temp for 1hr, with shaking

Western Blot - Probing

Date:

Prepare 1 Antibody Probing Solution

Blot # 1	
Antibody	H3K4me1
Company	Diagenode
Catalog #	C15410037 (pAb-037-050)
Lot #	A1657D
LIMSID	
Aliquot Amt	
Dilution Factor	1: 500
	6ul H3K4me1 + 3ml of 5% milk in 1X TBST

Blot # 2	
Antibody	H3 Core
Company	Abcam
Catalog #	ab1791
Lot #	GR65697-1
LIMSID	sol137289
Aliquot Amt	3ul
Dilution Factor	1: 1000
	3ul H3 Core + 3ml of 5% milk in 1X TBST

Blot # 3

Antibody	H3K4me3
Company	Cell Signaling
Catalog #	9751S
Lot #	Lot#7
LIMSID	sol145197
Aliquot Amt	5ul
Dilution Factor	1: 500
	6ul H3K4me3 + 3ml of 5% milk in 1X TBST

Blot # 4	
Antibody	H3K9me3
Company	Diagnode
Catalog #	pAb-056-050
Lot #	A1675-001P
LIMSID	sol135235
Aliquot Amt	3.29ul
Dilution Factor	1: 500
	6ul H3K9me3 + 3ml of 5% milk in 1X TBST

pour off blocking solution

pour diluted 1' Antibody on membrane and incubate overnight @ 4'C with shaking

wash 3x with 1X TBST, 10min each with shaking

Prepare 2" Antibody Probing Solution

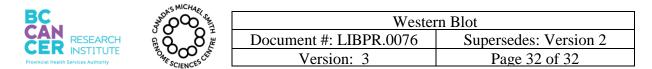
Antibody	Goat Anti-Rabbit HRP
Company	Pierce
Catalog #	1858415
Lot #	HA102347
Dilution Factor	1: 3000
	1ul Goat Anti-Rabbit HRP + 3ml of 5% milk
	in 1X TBST
🗖 a sur dibat d 0: A sib s da se - se bass s	

pour diluted 2' Antibody on membrane

incubate for 1hr at room temperature, with shaking

wash 3x with 1X TBST, 10min each with shaking

ECL detection


mix together 500ul of Enhancer Solution and 500ul of Peroxide Buffer per Blot

cover membrane with ECL detection buffer and incubate for 2mins

while incubating, cover blots with a mylar sheet

after incubation, use kimwipe to absorb excess ECL and cover with fresh mylar sheet

expose to film and devlop in dark room

APPENDIX B

Confirmation of Protein Transfer Using Ponceau Stain

Follow the steps below if it is necessary to confirm the transfer of the cell lysate from the gel to the nitrocellulose membrane:

1. To prepare Ponceau stain, see Table 7. Prepare the stain in a fume hood.

Table 7. Ponceau Stain		
Reagent	Volume	
Ponceau Powder	50mg	
Glacial Acetic Acid	2.5mL	
Ultrapure H ₂ O	up to 50mL	

- 2. Pour enough Ponceau stain on to the membrane and to cover the membrane completely.
- 3. Pour off the Ponceau stain immediately and rinse the membrane with dH_2O . Continue to rinse until the pinkness in the membrane disappears and the bands of interest are visible. If the protein bands are not visible, consult with an APC.